2 research outputs found

    Discrete wavelet transform realisation using run-time reconfiguration of field programmable gate array (FPGA)s

    Get PDF
    Abstract: Designing a universal embedded hardware architecture for discrete wavelet transform is a challenging problem because of the diversity among wavelet kernel filters. In this work, the authors present three different hardware architectures for implementing multiple wavelet kernels. The first scheme utilises fixed, parallel hardware for all the required wavelet kernels, whereas the second scheme employs a processing element (PE)-based datapath that can be configured for multiple wavelet filters during run-time. The third scheme makes use of partial run-time configuration of FPGA units for dynamically programming any desired wavelet filter. As a case study, the authors present FPGA synthesis results for simultaneous implementation of six different wavelets for the proposed methods. Performance analysis and comparison of area, timing and power results are presented for the Virtex-II Pro FPGA implementations
    corecore